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This paper discusses the implementation of a subgradient projection

algorithm due to Sreedharan 11.rrfor the minimization, subject to a finite

number of smooth, convex constraints, of an objective function which is the

sum of a smooth, strictly convex function and a piecewise smooth convex

function. Computational experience with the algorithm on several test

problems and comparison of this experience with previously published results

is presented.
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SIGNIFICANCE AND EXPLANATION

The need to optimize an objective function subject to some sort of

constraints arises in almost all fields that use mathematics. In many

problems, however, the objective function is not differentiable so that

standard algorithms based upon gradients are not applicable. This is the

case, for example, with many problems arising in economics and business, and

with certain design problems in engineering. One approach to addressing this

difficulty is to construct a suitable generalized gradient, the subgradient,

and base an algorithm upon it instead of on the gradient.

This paper discusses the implementation of a subgradient projection

algorithm for the minimization of a certain kind of non-differentiable,

nonlinear, convex function subject to a finite number of nonlinear, convex

constraints. Computational experience with the algorithm on several test

problems and comparison of this experience with previously published results

is presented.
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IMPLEMENTATION OF A SU14RADIENT
PROJECTION ALGORITHM II

Robert W. Owens*

1. Introduction

In the early 1960's, Rosen developed gradient projection algorithms for

nonlinear programming problems subject to linear (9] and nonlinear (10]

constraints. Recent work by Sreedharan has generalized this earlier work and

may be viewed as the subgradient counterpart of Rosen's work. In [123,

Sreedharan developed a subgradient projection algorithm for the minimization

of the sum of a piecewise-affine convex function and a smooth, strictly convex

function, subject to a finite number of linear constraints. Rubin [11]

reported on the implementation of that algorithm. Then in [13], Sreedharan

extended his previous results to the case of an objective function which is

the sum of a piecewise smooth convex function and a smooth, strictly convex

function, subject to a finite number of smooth, convex constraints. Parallel

to Rubin's investigations, this paper reports on the implementation of that

algorithm. Since this latter paper by Sreedharan is an extension and

generalization of the former, the computational results of Rubin are relevant

to this work; consequently, where reasonable, we have chosen to parallel

Rubin's presentation for ease of comparison of the results.

Considerable effort has been and continues to be expended minimizing

convex functions subject to convex constraints and the difficulties

encountered are numerous. While no implementable algorithm can successfully
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handle all problems, Breedharan's algorithm does address several which have

plagued others in the field. Rosen's original iterative algorithms were

susceptible to what is sometimes called jamming or zigzagging, i.e. the

generated sequence clustering at or converging to a nonoptimal point. Various

techniques have been proposed to avoid thist by using c-subgradients

Sreedharan's algorithm is guaranteed convergence to the optimal solution.

Others who have used c-subgradient projection methods, e.g. (31, encounter

computational difficulties since the complete e-subdifferential uses non local

information and its actual determination can be computationally prohibitive.

Sreedharan's algorithm requires that only a certain subset of the £-subdifferential

be computed, a more straightforward task. Polak's (7] gradient projection

algorithm essentially projects the gradient of the objective function onto

supporting tangent vector spaces, a method different than Sreedharan's. More-

over, Polak hypothesizes a certain linear independence of the gradients of the

C-binding constraints whereas the algorithm we are reporting on requires no

such assumption.
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2. Problem

d
Let Q C R be a nonempty, open, convex set, and let fo gi vji

iin,2...mJ-1,2,...,n be convex differentiable functions from

0 into R. Also, let f be strictly convex. Let x - (x e lg19(x) 4 0,

i=12,..,).We assume that X is bounded and satisfies Slater's constraint

qualification: there exists a e x such that gi(a) < 0, 1-1,2,....,If. Let

v(x) - max(v (x)fjI=,2,...,n). The problem to be solved, referred to as

problem (P) is:

minimize: f(x) + v(x)

(P):
subject to: x e x

Vote that (P) has a unique solution since f + v is continuous and

strictly convex on the compact set X. Note also, however, that in general

f + v is not differentiable.

-3-



3. Notation

d
Given x, y e R , we denote the standard Euclidean inner product of x

and y by juxtapostion, i.e. xy, and the corresponding length of x is

denoted by lxi. Given a nonempty, closed convex set S C Rd , we denote by

N[S] the unique point of S of least norm. y = NIS] is the projection of

0 onto S and is characterized by the property that y(x-y) ) 0 for all

x e S. For a differentiable function *, denote by *'(x) the gradient of

at x. Given any set S C Rd , let cone S be the convex cone with apex

0 generated by S and cony S the convex hull of the set S.

For any point x e X and any C ) 0, define the following four sets:

I(x) = {itgi(x) ) -C 1 ( i ( ml

JC(x) = {jlv (x) ) v(x) -e, 1 C j 4 n)

C (x) = cone {glx)Ii e I (x))

KC(x) = conv {v;(x)Ij e Jclx)}.

With x e x, Io(X) is the set of active (i.e. binding) constraints at x,

while I C(x), with C > 0, is the set of £-active (i.e. almost binding)

constraints at x. JC(x), with E > 0 and x e X, is similarly interpreted

in terms of the maximizing functions that define the function v. C Cx) and£

K Cx) are the easily computable subsets of the c-subdifferentials referred

to in section 1.

-4-



4. Algorithm

Step 1z Carry out an unconstrained minimization of f. If no minimizer

exists in a, go to step 31 if the minimizer c exists in 9 but c 4 X,

go to step 3. If c e X, proceed to step 2.

Step 2: If v;(c) - 0 for jal,2,...,n, then STOPI c solves (P).

Otherwise proceed to step 3.

Step 3: Start with an arbitrary x0 e x, 6 > I, and set k - 0. Let

0 < o < -maxgii(a)J1 - i - m). Set E - Co

Step 4: Compute y0 = N[f'(xk) + K0(xk ) + Co(xk)]. If Y0 - 0,

STOPi xk solves (P). Otherwise proceed to step 5.

Step 5: Compute y. W N[f'(xk) + KC(xk) + C (xk)]"
12

Step 6: If ly > E, then set e k = E, S k  y., and go to Step S.

Step 7: Replace E by E/6 and go to step 5.

Step 8: Let I - Ik (xk). If I - +, then let uk - 0 and Hk = O.

If I # *, then proceed as follows. Let y qi(xklgJ(x) for i,j e I

and solve the following linear programming problem for Vi 0 o, i e I:

Minimize:

ieI

Subject to: I Y )ji Ig;(x)i, J e I.
ieI

Set gl- k) and -+w
Set - a n - (lf'(X))l + max lv;(xk,)l)Iukl.

Step 9: Let Ak - 1Sk12/(2Kk + 1) and tk  Sk + XkU k .

Step 10: Find -k max{aixk - et 6 X and gi(xk - a) g1 (xk) Vi 6 I}

-5-
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Stop 11: Find k e [O';k] such that there exists

zk e fl(x - aktk ) + KO(x - aktk ) with Zktk - O' If no such ak exists,

then set ak - ak*

Step 122 Set xk+ 1 - x - Cktk' increment k by 1, and go to step 4.

Steps 1 and 2 are present for technical reasons and rule out the

possibility that a given problem has an easily obtained solution. For many of

the test problems considered, these steps were bypassed since a specific

starting point was desired or it was known that a trivial solution did not

exist. In the fully implemented version of this algorithm actually tested,

step 1 was performed by calling the IMSL subroutine ZXCGR which employs a

conjugate gradient method to find the unconstrained minimum of an n variable

function of class C 1 .

The stopping criteria of either step 2 or step 4 would, in practice, be

replaced by ly 0 1 or 1vj (c) becoming sufficiently small.

In [13] it is shown that -tkI from step 9, is a feasible direction of

strict descent for f + v and that ak, from step 11, is strictly positive.

Before describing computational trials on test problems, the more

substantial subproblems involved in carrying out the steps of the given

algorithm are discussed. Specifically, we mention the projection problem

inherent in both steps 4 and 5, the linear programming problem of step 8, the

line search required in step 10, and the one dimensional minimization

indirectly called for in step 11.
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5. Subproblems

The problem of computing the projection of 0 onto f'(x k ) + Kc(xk) + CE(x k )

with c - 0 (step 4) or e > 0 (step 5) is solved almost exactly as in [11],

i.e. the problem is expressed as a quadratic programming problem which is then

solved by standard techniques. For completeness we outline the key ideas; for

details see Rubin [1] and Cottle 14].

Assume that x e x, £ > o, :I(x)- (i 1 ... i) * *, and

J C(x) - (Jl,...,j) * #. y - Nff'(x) + K (x) + C (x)] can be written as

y fx) + kIIgk (x) + B v I )IkW, where Ok )0 0, k[l,

0 0, k -1,...,q, 0k 1, and (1/2)lf'(x) + x kg(k
k-1 

k

is a minimum over all such a and 0k s. Let hk = f(x) + v x),kk

k-1,...,q. Then f'(x) + B .iv' (x) - I Okh k Let e-
k- k k-ik

be the p + q vector the first p of whose components are 0 and the last

q of whose components are 1. Let u = (a, .*."ap  
0 '1... 8 q ),

M = ( g (x),...,gi (x), h 1,,..,h q), and Q = MTM, where the superscript T
1 pq

denotes the transpose. The projection problem under consideration can now be

expressed as the quadratic programming problem:

Minimize: 1/2 uQu

Subject to: ue 1

u) 0

Rubin adapted an algorithm of Wolfe to solve this problem, an algorithm which

is guaranteed to terminate at the solution in finitely many steps. In the

present work, a package '11 develor d at the University of Wisconsin-Madison,

based on Cattle's version ". the principal pivoting method [4] was used.

-7-



Since the primary means of reporting on the success of the subgradient

projection algorithm is to give the number of iterations needed to obtain a

fixed accuracy, little extraordinary effort was expended optimizing the

computations involved in each iteration. Instead, IMSL subprograms were used

where convenient.

Step 8 requires the solution of the linear programming problem stated in

section 4; this problem is the dual of a standard linear programming problem

for which subroutine ZX3LP, a "revised simplex algorithm - easy to use

version,a is immediately applicable. No difficulties were encountered.

Step 10 involves a line search to locate ak" the maximum a such that

xk- atk e x and no previously £-binding constraint becomes more binding.

Letting

giC (x -

gi(G { - ttk) - g,(xk) i e I

and G(a) = max{G (a)11 4 i ( ml, and using the convexity of the gi, step
i

10 can be rephrased as: find the unique positive root ak of G(a) = 0.

After locating 0 < a < a such that G(aI) < 0 < G(a ), this latter

1 2 1 2

problem is solved by bisection with the stopping criteria being that

-12 -12
0 4 G() < 10 and Ja 1 - a2 1 < 10

- .

Step 11 requires that we locate, if it exists, ak e (O,k] such that

there exists zk e f'(xk - akt) + KO(x - aktk ) with zk tk = 0; if no such

ak exists, then set ak = 9k . This is equivalent to locating the minimum of

the strictly convex function F(c) - f(xk - atk) + v(xk - atk) on [0,ak] ;

see (13, Lemma 5.22]. The IMSL subroutine ZXGSP for one-dimensional unimodal

b-B-



function minimization using the Golden Section search method was used to solve

this subproblem. The stopping criterion employed was that the interval within

which the minimum occurs should be less than the minimum of 10 - 12 and

10 - 4 , . Occasionally an error message appeared saying that the function

did not appear unimodal to the subroutine; this was clearly due to roundoff

errors becoming significant. Nevertheless, these warnings posed no major

difficulties.

With the earlier, linear version of Sreedharan's algorithm, Rubin [11]

was able to carry out an efficient search for ak without explicitly locating

ak by exploiting the linearity of the gi and vj functions. Although

some improvement for finding a k  in the present implementation is undoubtably

possible, no such dramatic economies are to be expected due to the

nonlinearity of the functions involved.



6. Computational Trials

The subqradient projection algorithm was implemented in Fortran 77 on a

VAX 11-780 using double precision (12-13 digits accuracy) and employing the

software described in section 5. For test purposes, 6 (step 3) was taken to

be 10. In order to avoid taking unnecessarily small steps early in a problem,

C was reset to Co  at stop 4 for the first 4 iterations and was allowed to

follow the given nonincreasing pattern thereafter. The convergence criterion

of step 4 was relaxed to produce termination if either ly01 < 10
- 12 or

Ix k - xk+I I < (1/2)o10 - 9 .

The first two problems below are ones considered by Rubin [11], neither

of which meet the hypothesis that f be strictly convex since in each

f-- 0.

Example 1. The first example was proposed by Wolfe [14] and uses d - 2,

f - 0, vI(X,y) - -x, v2(xy) - x + y, v3 (x,y) - x - 2y, n - 3. Following

Rubin, we investigated cases with constraints leading to a rectangular

feasible region having the global minimizer (0,0) of f + v interior to, on

the boundary of, and exterior to the feasible region. Table I summarizes the

results. The lower left and upper right corners of the feasible region are

given, as is the point at which the optimum value is achieved and the number

of iterations required to obtain termination. In each case

- -1/2 max gi(xoeyo).

The slow convergence occurs only, but not always, in cases where the

optimal solution is at a corner. The linear version of this algorithm was

able to handle all cases in at most 2 iterations [11].

-10-



Lover Left Upper Right Solution Number of
Corner Corner Iterations

(-1 -1 ( 1, 1) 0 , 0) 0

( 1 -1 ( 2, 1) ( 1, O) 1

(-3, 1) C 2, 3) (-1/2,1) 2

(-2,-i) (-1, 1) (-1, 0) 1

(-2,-4) ( 2,-2) (-2,-2) 18

( 1, 2) ( 3, 4) I 1, 2) 13

(-2, 1) (-1, 2) (-1,3/2) 1

(-4,-3) (-1,-I) (-1,-i) 17

0 0, 0) 0 1, 1) ( 0, 0) 1

0,-1) ( 1, 1) 0 0, 0) 1

Table I

Tet results for example 1.

Example 2. The second example, attributed to Powell, also appears in [1.4].

In that paper, an unconstrained minimization algorithm proposed by Wolfe

achieves only linear convergence when applied to this example. d - 2,

f " 0, n - 5 with v (x,y) - Coos !I)x + (sin 2")y for w-1,...,5. We

set X - cony((1, t1)), so that the global minimizer (0,0) is interior to

X, and we choose the initial point (p cos. , P Simi ) for P > 0 as was

considered by both Wolfe and Rubin. Computational results for various values
w

and ranges of p are sumarized in table I. p C sec -1 1.23605 yields an
5

initial point inside of X while p > sec i  puts x0 outside of X.
5-



Rubin also tested the same function f + v with the feasible region

determined by x, y 4 0 and x + y 4 -1 and found convergence in 2 to 4

iterations from various starting points. Our results are in basic

agreement. We had to start quite far out in the third quadrant, e.g.

(-10,-10) before the algorithm required 5 iterations to terminate.

P No. of Iterations

[0, sec 7-) 1
5

(sec , 32.94) 2

(32.95, 100]* 3

1234 10

Table II

Test results for example 2.

* 100 was the largest value tested in this range.

Example 3. A third example tested comes from [2, p.76] where the problem is

solved by a parametric feasible direction (PFD) algorithm - section 7 of the

book. The problem involves a quadratic objective function in 5 variables and

7 constraints involving linear, quadratic, and exponential terms; v 0

since their algorithm is not designed to handle nondifferentiable functions.

Our resalts are in qualitative agreement. The PFD algorithm terminated after

-12-
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35 iterations with 6 decimal figures of accuracy; the subgradient projection

algorithm terminated after 41 iterations with 9 decimal figures of accuracy.

Example 4. The fourth example tested was introduced by Demyanov and Malozemov

(5] to illustrate jamming of a certain subgradient optimization algorithm. In

this example, d - 2, f(xy) 1 (not strictly convex), n - 3 with
22

vl(xy) - -5x + y, v2(xY) x2 + y + 4y, v 3(xy) - 5x + y. We also

impose the artificial constraint g(xy) - x 2 + y2 _ 99 4 0. Starting from

2 2 17
any initial point on the circle (x + 5/2) + (y + 3/2) = TO with

-1.928 4 x • -1.831 and y > 0, at which v1 and v2 are maximands for

v, Demyanov and Malozemov note that the usual subgradient optimization

algorithm converges to the nonoptimal point (0,0), not to (0,-3) as it should.

When our subgradient projection algorithm was used to solve the above

problem with nine different starting point satisfying the above conditions,

the optimum solution was obtained in at most 4 iterations. For various other

starting points, each of which had v1 and v2 maximands for v, the

algorithm required from I to 7 iterations before termination. In all cases,

-2
0 10 was used.

Example 5. The fifth example, appearing in (1, p.447], has no optimum

solution, but a straightforward application of a steepest feasible descent

direction method without "anti-zigzagging" precautions leads to convergence.

The problem is

Minimize: f(x,y,z) " (x2 - xy + y2 )3 /4 -Z

Subject to: x,yz ) 0

and with the initial point specified to be (0, 1/4, 1/2). Clearly f(0,O0,),

z > 0, is negative and arbitrarily large in magnitude for appropriately

-13-
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chosen z. It is easily shown that, when the steepest feasible descent

direction method in employed, the iterates (xk, Yk' zk converge to

(0,0, v12: ith the third coordinate monotonically increasing. For test

2 2 2purposes, we introduced the extra, artificial constraint x + y +3 z 225

in order that the problem have a solution, albeit one very far removed from

the wfalse solution" to which the simpler algorithm converged. By k - 5 the

third coordinate had exceeded -j-,: by ki - 82 the artificial constraint was

binding; and the algorithm successfully terminated after III iterations.

Ixample 6. Finally the algorithm was tested on a family of problems each

involving two variables (d - 2), three vjs (n - 3), and four constraints

(m - 4). All functions were quadratic of the form a ICx-a 2 + a Ya4)2_ 5

and various trials were conducted with different choices of the parameters

ai. For example, consider the two problems with vICx,y) ( x-2)2 +

v2(x,y) - (1/2)(x 2 + y2 ), v3(x,y) x x2 + Cy-2 )2 ' gICx'y) -(x_1) 2 + Y2 - 4,

g2 (x~y) - (x+') 2 +. - 4, g3 (x,y) x2~ + (y_'1)2 _ 4, 94 (x,y) _ x
2 + (y+1)2 - 4

With f~x,y) - (x-2) 2 + (y-2)2  the solution (a,a), - - J7- was found in

I step, while with f(x,y) - (x-4) 2 + (y-1) 2  the same optimum point was found

in 9 iterations. In each case Xo-(0,0) was obtained by the fully

implemented algorithm and co 1.5.

-14-



7. Conclusions

As Rubin (11] found with the earlier, linear version of this algorithm,

the subgradient projection algorithm is a viable method for solving a number

of convex programming problems including some which do not meet the hypotheses

needed to guarantee convergence, e.g. examples 1,2,4. When applied to smooth,

ie. differentiable, problems, e.g. example 3, it appears to perform competi-

tively with less general algorithms designed specifically to solve such

problems. It successfully avoids jamming on test problems that have been

specifically designed to jam, e.g. example 4. It qualitatively replicates the

results of the earlier linear method when applied to previously tested

problems. And it successfully solves in a small number of iterations larger

test problems designed to exercise the full range of capabilities built into

the algorithm.

Since one always wants faster convergence than is available, it might be

worth speculating on what factors might limit the performance of this

algorithm. The anti-jming techniques, although clearly necessary, seem to

entail a rather heavy cost in slowing down performance. Whereas the gradient

and even the subdifferential are local entities, the c-subdifferential is

not. While many £-subgradient based algorithms require knowledge of the

entire c-subdifferential, a formidable if not prohibitive task, Sreedharan'8

algorithm requires only an easily computable subset of that set. An appro-

priate element of the C-subdifferential is chosen and used to construct a

feasible direction of strict descent while avoiding jaming. One possible

source of difficulty is the difference between the directional derivative

F (x;u) and the C-subgradient based approximation to it, say F'(x;u),
C

where F is the objective function, e.g. P - f + v in our case. Hiriart-

Urruty (61 has found that lF'(xlu) - ?(xiu)l - O(/e) as c.O. In some of

i
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our trials, indirect evidence of this qualitative behavior can be found

indicating a possible culprit when slow convergence is observed. Consider the

following simple problem:

Minimize: F(x,y) - (x-3)
2 + (y-1) 2

4 y4
Subject to: x + 4<

Referring to Table III, the correspondence either between £k and the number

of correct figures of the iterate or between e k and lY o1 suggests an

ii-order convergence rate in line with Hiriart-Urruty's result.

-16-



k (xkuyk) Ckl =rx~k

0 (0, 0) .5 6 10

5 (.970, .58) 5 x 0-4 2.67 x 10-2  4.29559

10 (.97122, .5762395) 5 x 10- 1 4.38 x 105 4.29553627388

15 (.97121490, .5762462) 5 x 10-13 1.08 x 1-6 4.2955362736910

20 (.97121493596, .5762460176) 5 x 10-16 1.13 x 10-9 4.295536273690917

* (.9712149358190, .5762460177155)

Table III

Indirect or suggestive evidence of a IC-order rate of convergence of the
subqradient, projection algorithm

*The actual solution correct to 12 digits.
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